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It is recalled how the nonlinear interaction between a gas bubble and an external extra pressure can yield
phase conjugation. Using the Glauber representation, we show that the effect of the latter is formally analogous
to that of a � pulse in nuclear magnetic resonance, so that the acoustic equivalent of spin echoes may be
expected in a bubble cloud. An experimental attempt to observe phase conjugation is reported in the single-
bubble case.
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I. INTRODUCTION

First observed in the optics domain, many nonlinear ef-
fects have been successfully transposed in the acoustics field
�1�. In the latter field, the most frequently cited �if not used�
nonlinear medium is undoubtedly the bubbly liquid. Inject-
ing gas bubbles in a liquid provides it indeed with a strong
acoustical nonlinearity. In the eighties, the phase conjugation
of a sound wave traveling through a bubbly liquid was theo-
retically studied �2,3� and experimentally observed �4–6�.
Other nonlinear phenomena, such as Raman scattering for
instance �7�, were also observed. Recently, bubbles have also
been proposed as an active medium for the practical imple-
mentation of an acoustic laser �8�. Nonlinear properties of
bubbles are also of great interest for medical purposes: har-
monic imaging, with bubbles as contrast agent, is a major
field of ultrasonic echography.

In the present paper, we report the evidence of a phase
conjugation effect with a single bubble.

Section II is devoted to the theoretical formulation of this
question. Introducing a complex variable allowing by itself
for the bubble’s physical state enables us to use the secular
approximation and get simplified motion equations. Two par-
ticular cases are then considered and solved: the direct and
parametric resonant excitations. It is shown that the latter
excitation involves phase conjugation. In Sec. III, we pro-
pose an experimental check of this phase conjugation effect
with a single bubble. Taking advantage of the specific phase
signature of the conjugated component of the oscillation, we
perfect a lock-in phase detection procedure to extract this
conjugated component from the background linear compo-
nent. Lastly, in Sec. IV, we demonstrate the analogy between
the phase conjugation of one bubble’s oscillation and the
�-pulse inducing a spin-flip in the NMR domain, and we
discuss the possibility of observing bubble echoes in a
bubble cloud.

II. THEORY

Let us consider a spherical air bubble in water, with equi-
librium radius R0 under pressure P0, submitted to an extra
pressure pe�t�. We will study the oscillations of the bubble,
using the following approximations. First, we assume that
the oscillating bubble remains spherical and that the varia-
tion ��t� of its radius is always small compared with R0. We
also neglect viscosity, surface tension and the compressibility
of water. Lastly, we consider that the transformations under-
gone by the air during the oscillations are isentropic. Note
that, as strong as they may seem, these approximations will
be valid for the experiments we present in Sec. III.

A. Hamiltonian of the bubble

Let us construct a Hamiltonian for the bubble. Three en-
ergy terms are involved: potential energy of the gas, kinetic
energy of the water, and coupling energy due to the extra
pressure.

Since the air inside the bubble is assumed to undergo
isentropic transformations, when the radius of the bubble
varies from R0 to R0+�, the inner pressure P0 becomes P0
+ p��� with extra pressure p��� given by Laplace’s law:

p���
P0

= �1 +
�

R0
�−3�

− 1, �1�

where � is the air heat capacities ratio �16�. Hence the elastic
potential energy associated with the variation of the bubble’s
radius:

EP��� = − �
0

�

d��4��R0 + ���2p����

= 4�P0R0
3��1 +

�

R0
�3

− 1

3
−
�1 +

�

R0
�3−3�

− 1

3 − 3�
	 .

�2�

Moreover, the total kinetic energy of the surrounding wa-
ter, assumed incompressible with �constant� mass density �,
is given by
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EK��, �̇� =
1

2
M0�1 +

�

R0
�3

�̇2, �3�

with M0=4��R0
3. As a consequence, the Lagrangian L0 of

the free bubble reads, neglecting air’s inertia:

L0��, �̇� = EK��, �̇� − EP��� . �4�

If now the air bubble is submitted to an outer extra pressure
pe�t�, Lagrangian L0 should be substituted by

L��, �̇,t� = L0 −
4

3
�R0

3�1 +
�

R0
�3

pe�t� . �5�

Introducing the dimensionless variables x=� /R0 and y�t�
= pe�t� / P0, this Lagrangian is Legendre-transformed into the
Hamiltonian:

H�x,p,t� =
p2

2I0
�1 + x�−3 +

I0�0
2

9�

�1 + x�3 − 1 +

�1 + x�3−3� − 1

1 − �

+ �1 + x�3y�t�� , �6�

with I0=M0R0
2, �0=�3�P0 /�R0

2 the Minnaert angular fre-
quency �9� and where p= I0�1+x�3ẋ stands for the conjugate
momentum of dynamical variable x. Note that the above
Hamiltonian leads to the well-known Rayleigh-Plesset equa-
tion �see Ref. �10�, p. 302�. In the case of small oscillations
�x and y�1�, H can be considered as the sum of three
terms:

H = H0 + W + He�t� , �7a�

with

H0 =
p2

2I0
+

1

2
I0�0

2x2, �7b�

W =
p2

2I0
�− 3x + ¯ � +

1

2
I0�0

2
„�1 − ��x3 + ¯ … , �7c�

He�t� = I0�0
2�1 + 3x + 3x2 + x3�

y�t�
9�

. �7d�

The first two terms concern the free bubble: H0 is the har-
monic oscillator �HO� Hamiltonian, whereas W �hereabove
expanded in increasing powers of x� includes all the nonlin-
earities of the free oscillator. The third term He�t� is the
�bubble-external extra pressure� interaction Hamiltonian.

B. The Glauber variable

Let us introduce the complex variable �:

� =
1
�2

�x + i
p

I0�0
� . �8a�

Since it gathers both x and p, this variable sums up by itself
the whole physical state of the oscillator and turns out to be
very handy. Indeed, � obeys a complex and first order dy-
namic equation instead of the usual real second order equa-

tion. Dealing with first order equations permits us to use
secular approximations, hence obtaining very simple equa-
tions. Observe that � is proportional to the variable �Gl first
introduced by Glauber in the quantum mechanics domain
when aiming at describing the quasiclassical �coherent�
states of the HO �11�.

We have, as a consequence of �8a�:

x =
� + �*

�2
, p = − iI0�0

� − �*

�2
, �8b�

and, � � standing for the Poisson’s brackets,

�x,p� = 1 � ��,�*� =
1

iI0�0
. �8c�

With the above expressions, Hamiltonians H0, W, and He�t�
respectively read

H0 = I0�0
2�2, �9a�

W =
I0�0

2

4�2
�3�� − �*�2�� + �*� + �1 − ���� + �*�3 + ¯ � ,

�9b�

He�t� = I0�0
2
1 +

3
�2

�� + �*� +
3

2
�� + �*�2

+
1

2�2
�� + �*�3� y�t�

9�
. �9c�

C. Excitation of the bubble

From now on, we shall limit the expansion of Hamil-
tonian H to the third order �y�t� and � being considered of
the same order�. Then, including a phenomenological damp-
ing rate 	 to account for dissipation processes, we obtain a
time evolution of variable � ruled by

�̇ = �− i�0 −
	

2
��

− i�0�−
3�

4�2
�2 −

3�

2�2
��* +

3�4 − ��
4�2

�*2�
− i�0� 1

�2
+ � + �*� y�t�

3�
. �10�

From Eq. �10� above, two kinds of excitation of the bubble’s
oscillations can be envisaged. To see it, let us consider the
nonlinear terms as well as the y�t� terms in the right-hand
side as small perturbations, and set up a perturbative resolu-
tion of this equation. Obviously, the unperturbed time evolu-
tion of � is

��0��t� = Ae−i�0te−�	/2�t, �11�

with A=��0��t=0�. In order to take the perturbation into ac-
count, let us allow constant A to vary with time and set
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��t� = A�t�e−i�0te−�	/2�t. �12�

Then, using �12�, Eq. �10� becomes

Ȧ = − i�0
3

2�2
e−�	/2�t


�−
�

2
A2e−i�0t − �AA*ei�0t +

�4 − ��
2

A*2e3i�0t�
− i�0� 1

�2
ei�0t+�	/2�t + A + A*e2i�0t� y�t�

3�
. �13�

In the general case, Eq. �13� above is not easy to solve.
Nevertheless, for excitations of the form y�t�=Re�y0e−i�t�
= y0cos��t+��, two resonances appear, respectively for �
=�0 and �=2�0.

�i� The �=�0 resonance is associated with the direct ex-
citation of the air bubble. For �−�0��0, and neglecting
the nonresonant terms �i.e., at the secular approximation�,
Eq. �13� simplifies in

Ȧ = −
i�0

�2

y0

6�
ei��0−��t+�	/2�t. �14�

�ii� The �=2�0 resonance is associated with the para-
metric excitation of the air bubble. For �−2�0��0, and
neglecting again the nonresonant terms, Eq. �13� becomes

Ȧ = − i�0
y0

6�
A*ei�2�0−��t. �15�

Note that Eq. �15� involves a phase conjugation effect: the
increase of A between times t and t+dt is proportional to A*.
Let us now suppose that we excite a bubble with the two-
pulse sequence displayed in Fig. 1: a first pulse at �1��0
�direct excitation�, and a second pulse at �2�2�0 �paramet-
ric excitation�.

We note y1�t�= y01cos��t+�1� the first acoustic pulse,
applied to the bubble between times t=0 and t=t1. If �0
−�1− i�	 /2�t1�1, the subsequent oscillation �i.e., for t
�t1� is then characterized by the complex variable

�1�t� = −
i

�2

y01
6�

�0t1e−i��0t+�1�−�	/2�t. �16�

The second acoustic pulse, with angular frequency �2
�2�0 and complex amplitude y02= y02e−i�2, is applied be-
tween times � and �+t2. Assuming that A does not vary too
much during this second pulse, Eq. �15� is integrated in

A�� � t � � + t2� = A1 − i�0A1
* y02

6�

ei�2�0−�2�t − ei�2�0−�2��

i�2�0 − �2�
.

�17�

Now, assuming that the timewidth and the detuning of this
second pulse are such that 2�0−�2t2�1, the subsequent
�i.e., for t��+t2� oscillation of the bubble is described by
the complex variable

�1+2�t� = �1�t� + �pc�t� , �18�

with �1�t� displayed in �16� and

�pc�t� =
− i
�2

y01y02
�6��2 �0

2t1t2e−i„�0�t−2��+�2�+�2−�1…−�	/2�t.

�19�

Equation �19� deserves some comments. We postpone them
to Sec. IV and explain, in the following section, how the
phase-conjugated �pc� component of the bubble’s oscillation
can be experimentally extracted from the overall signal.

III. EXPERIMENT

Figure 2 displays the experimental setup used to acquire

FIG. 1. The two-pulse sequence used to excite the bubble. The
first pulse �with angular frequency �1��0� induces a direct exci-
tation. The second pulse �with �2�2�0� induces a parametric ex-
citation involving the phase conjugation.

FIG. 2. Sketch of the experimental setup. The
bubble, caught under a net, is excited by a two-
pulse acoustic sequence generated by a speaker,
and its response is detected with a hydrophone.
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the acoustic signal of the bubble. In an aquarium filled with
water, a bubble is caught up under a net. This use of a net
was previously checked not to modify the acoustic response
of the bubble �12,13�.

The acoustic pulses are generated with an underwater
speaker and the pressure is measured with a hydrophone.
Both these pieces of apparatus are linked, each via an ampli-
fier, to an acquisition board �NI PCI-4451�.

A. Phase detection

The extra pressure generated by the oscillations of the
bubble is proportional to the real part of � �17�. From �16�
and �19� we thus expect a ratio �conjugated signal over direct
signal� of the order of �y02 /6���0t2. Given the pressure
amplitudes we are able to obtain experimentally, this ratio is
of the order 10−2–10−1. The straight measurement of the con-
jugated component is therefore impossible for it is totally
occulted by the direct component. But we can profit from the
fact that both components bear different phases. While x1 is
proportional to sin��0t+�1� �see �8b� and �16��, xpc is pro-
portional to sin(�0�t−2��+�2�+�2−�1) �see �8b� and �18��.
In order to select a particular component and extract it from
the overall x1+2 signal, we used the following trick. Let us
submit the bubble to a set of N two-pulse sequences, with
phases �1 and �2 randomly varied from one sequence to the
other. Let �1i ,�2i and si�t� respectively be the phases of ap-
plied pulses 1, 2 and the corresponding hydrophone signal in
the ith sequence. We construct the quantity

�N�t� = �
i=1

N

si�t�cos��0t + �i� , �20a�

where �i is a reference phase which is varied from a se-
quence to the other as

�i = m�1i + n�2i + � , �20b�

with integers m ,n and adjustable dephasing � given once for
all �i.e., independent of i�. Let us suppose for instance that
we wish to select component x1�t�: we simply have to set
m=1, n=0 and �=� /2. To select component xpc�t�, we have
to set m=−1, n= +1 and �=� /2+ �2�0−�2��. It is also pos-
sible to select the exciting pulses generated by the speaker:
for instance, setting �i=�1i �i.e. m=1, n=0, �=0�, we select
the first pulse, and so on.

In any case, setting parameters �m ,n ,��, we select one
particular component of the hydrophone’s signal, and func-
tion �N�t� is then the sum of two quantities: �i� a constant
quantity proportional to N and to the amplitude of the se-
lected component, and �ii� a �constant or 2�0-oscillating�
quantity proportional to �N and to the total amplitude of the
unselected components.

Thus the extracting efficiency of such a phase-detection
method grows like �N. Consequently, we need for example
N=10 000 sequences to extract a particular component
which is 100 times weaker than the overall hydrophone’s
signal. Our detection method is illustrated �and checked� in
Fig. 3, and applied in Sec III B to the measurement of the
phase-conjugated component xpc.

B. Measurement of the phase-conjugated component

Let us capture under the net a bubble with T0=2� /�0
=0.88±0.01 ms �18�. We then submit it to a series of 3000
two-pulse sequences: the first pulse with a period T1
=0.88 ms �=T0� and a duration t1=15 ms, and the second
pulse with a period T2=0.44 ms �=T0 /2� and a duration
t2=10 ms. In order to have the strongest signal possible,

FIG. 3. Illustration and check of the phase detection method. �a� The bubble is excited with N sequences of two �0-oscillating pulses
bearing the random phases �1i and �2i. �b� The measurement of the hydrophone’s pressure gives the superposition of the two exciting pulses
and the two responses of the bubble. �c� The construction of �N with m=1, n=0 permits us to extract the signal associated to the first pulse.
Moreover, by adjusting the constant dephasing �, it is possible to separate the speaker’s response ��=0� from the bubble’s response ��
=� /2�. �d� The same procedure with m=0, n=1 permits us to extract the signal due to the second pulse.

LEROY et al. PHYSICAL REVIEW E 72, 046601 �2005�

046601-4



we initiate the second pulse at �=t1, i.e., we perform the
parametric excitation immediately after the end of the direct
excitation �see Fig. 4�, with an amplitude y02
= �1.23±0.03�
10−2 for the second pulse.

We start to measure the pressure when the hydrophone’s
signal is low enough to be unsaturated �10 ms after the end
of the second pulse� and we stop the acquisition 10 ms later.
From this signal, we then construct function �N�t�. By set-
ting m=1, n=0, and looking for the value of � which maxi-
mizes the amplitude of �N, we obtain the envelope of the
direct component x1�t� �Fig. 5�. We then consider the limit of
significance of any extracted signal to be this direct envelope
divided by �N: the �N�t� function we obtain with a particular

combination of m and n is considered as nonsignificant un-
less it overshoots this limit. We can check in Fig. 5 that, for
�m=−1, n=1�, �N�t� is over this limit, which confirms the
existence of the conjugated component due to the bubble. In
Figs. 6 and 7, we also check the linear dependences of this
signal with duration t2 and amplitude y02 of the second
pulse.

Note that in this experiment, our assumption of small os-
cillation amplitudes is valid. We can check it by measuring
the extra pressure generated by the bubble. It may seem sur-
prising, as we excite the bubble at both its direct and para-
metric resonances. In fact, in both cases, damping severely
limits the amplitude of the oscillations. For the direct reso-
nance, we can calculate from Eq. �14� that x��Q /3��y
where Q is the quality factor of the oscillator. For a milli-
metric bubble, Q�30. So, even with y�10−2 �i.e., the
highest pressure amplitude we are able to generate in our
experiment�, we expect x�10−1. As concerns the paramet-
ric resonance, we can calculate from Eq. �15� that the thresh-
old for the parametric instability is 3� /Q�10−1. As our
excitation amplitude is lower than this threshold, the oscilla-
tions of the bubble remain low.

IV. DISCUSSION

Let us now come back to our comments about Eq. �19�
which we postponed above. At time t=2�, the phase of �pc�t�

FIG. 4. A sequence of measurement. The bubble is first excited
from t=0 by a resonant ��1=�0� pulse during 15 ms. Then a large-
amplitude 2�0 pulse is applied during 10 ms. We acquire the hy-
drophone’s signal from t=35 to 45 ms. This sequence is repeated N
times, with phases �1 and �2 randomly varied from one sequence to
the other.

FIG. 5. �N�t� for different settings of �m ,n�. For m=1, n=0, we
obtain the envelope of the direct component, with an exponential
decay as expected �note the logarithmic scale in the figure�. The
limit of significance of any detected signal is then considered to be
this direct envelope divided by �N: any combination of phases
yielding a �N�t� signal lower than this limit is nonsignificant. We
find that, for �m=−1, n=1�, �N is over the significance limit: phase
conjugation is actually observed.

FIG. 6. Ratio of the conjugated and direct components as a
function of the duration t2 of the second pulse, for a fixed ampli-
tude y02=1.23±0.03
10−2. Error bars correspond to 1/�N. The
linear fit gives a slope of 1.17±0.08
10−2 for an expected value of
�� /3���y02 /T0�= �1.06±0.04�
10−2 ms−1.

FIG. 7. Ratio of the conjugated and direct components as a
function of the amplitude y02 of the second pulse, for a fixed
duration t2=10 ms. Error bars correspond to 1/�N. The linear fit
gives a slope of �9±1�
10−5 whereas the expected value is
�� /3���t2 /T0�= �8.6±0.1�
10−5.
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is independent of the value of �0. If then not a single bubble,
but a whole cloud of �noninteracting� bubbles with slightly
different radii �and therefore slightly different values of �0�
is excited at times t=0 and t=� by the above-described two-
pulse acoustic sequence, then a refocusing of their phases
should occur at time t=2�. This refocusing should generate a
local extra pressure signal in the water. Such a bubble echo is
formally analogous to the spin echo of the NMR domain.
This can be visualized in the complex plane of variable �, as
displayed in Fig. 8. As a matter of fact, there is a strong
analogy between our variable � and the transverse magneti-
zation m� � �i.e., the component perpendicular to the static

magnetic field B� 0� of the spin in the NMR domain. In this
analogy, the complex plane of variable � �which is in fact the
phase-space of the bubble’s oscillation� should be paralleled

with the NMR transverse plane �orthogonal to B� 0�. Initially
the bubble is at rest: ��t=0�=0. After the first pulse, the
bubble is excited: ��t=t1�0 �by care of simplicity, we have
substituted a straight line for the true path of �—in fact a
spiral—between times t=0 and t=t1�. Then, between times
t=t1 and t=�, the bubble oscillates freely: �still neglecting
dissipation� � follows a circle, exactly as the tip of the trans-
verse magnetization does in NMR during the Larmor preces-

sion around field B� 0. The effect of the second pulse is de-
scribed by Eq. �15� which, when using variable �, reads

�̇ = �*�− i�0y02
3�

e−i��2t+�2�� . �21�

The parametric excitation associated with the second pulse
therefore generates a component of � which is proportional
to �*. This effect is symbolized by the vertical dotted arrow
in Fig. 8 and can be paralleled with the result of the � pulse
in the analogous NMR sequence. Observe that the upshot of
the second pulse is not mathematically speaking a pure com-
plex conjugation, due to the multiplication of �* by the com-

plex number between parentheses in the right-hand side of
Eq. �21�, which is symbolized by the skew dotted arrow in
Fig. 8. Nevertheless the effect is the same since the argument
�=−� /2−�2�−�2 of this multiplying factor is independent
of �0.

If the bubbles of the cloud were uncoupled, one could
then observe bubble echoes analogous to spin echoes in
NMR. But, contrary to spins, bubbles are generally strongly
coupled together, due to the slow dying out �like 1/r� of the
pressure field generated by oscillating bubbles. Unless ex-
tremely dilute bubble clouds are used, interactions are likely
to play an important role and it is noteworthy that the possi-
bility of observing bubble echoes has already been envisaged
in literature �14�, but only with neglected bubble interac-
tions. In fact, as illustrated in Fig. 9, multiscattering effects
associated with bubble interactions could be turned to profit
to observe echoes in the following way. Let us consider a
monodisperse bubble cloud and suppose that, at time t=0,
we excite a single bubble, say bubble 1 �Fig. 9�a��. This
bubble starts oscillating and generates a �spherical� sound
wave. This sound wave will in turn excite neighboring

FIG. 8. Trajectory of the � variable in the complex plane, ne-
glecting damping. From t=0 to t=t1, the bubble is excited by the
first pulse. The subsequent free oscillations correspond to a circular
movement in the complex plane. At t=�, the parametric excitation
generates a component which is proportional to �* �vertical dotted
arrow� multiplied by a fixed complex number �second dotted ar-
row�. This process is analogous to a spin-flip in NMR.

FIG. 9. Phonon echoes in a bubbly liquid. �a� A single bubble
�1� is excited at t=0: bubble 1 starts oscillating. �b� A few scattering
paths originating in bubble 1: bubble excitation is spread all around
bubble 1 by multiscattering. �c� A strong 2�0 pulse is applied to the
cloud at t=�: bubble oscillations are partially phase conjugated. �d�
Reversed scattering paths of �b�: phase conjugation acts like a time
reversal. �e� The phase-conjugated component is refocused on
bubble 1 at t=2�.
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bubbles and so on. All bubbles being assumed to have
roughly the same Minnaert angular frequency �0, a strong
�resonant� multiscattering spreads excitation all around
bubble 1 �Fig. 9�b��. Let us now suppose that a
2�0-oscillating extra pressure is applied to the whole cloud
at time t=� �Fig. 9�c��. Each bubble of the cloud will then
undergo a �partial� phase conjugation, as explained in the
present paper. With respect to multiscattering, this second
acoustic pulse will start a time-reversal �Fig. 9�d�: note the
change of all the scattering paths direction arrows with re-
spect to Fig. 9�b�� and the phase-conjugated component of
the multiscattered wave will be refocused on bubble 1 at
time t=2� �Fig. 9�e��. Such an acoustic boomerang effect is
known as a phonon echo and has been already observed in
piezoelectric powders �15�.

V. CONCLUSION

Introducing complex variable �, we have obtained a very
simple equation to deal with the resonant direct �0 excitation

as well as parametric 2�0 excitation of a bubble with Min-
naert angular frequency �0. The latter parametric excitation
involves a phase conjugation mechanism, the conjugated
component being weak but bearing a specific phase. We have
observed and measured the conjugated signal with a single
bubble undergoing a two-pulse acoustic sequence: the first
pulse with angular frequency �0 directly excites the bubble’s
oscillation whereas the second pulse with angular frequency
2�0 induces the phase conjugation. This effect could be used
to produce bubble echoes, provided that the bubble-bubble
interaction be properly turned to account.
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